的位置要避开 R^* 对 H_1 的直射光。 $H_2 \ll 用 Agfa$ 8E 75HD 干板,干板乳胶面迎着 H_1 再现的共轭物 光波 O^* 。在物 $O = H_2$ 之间置中性滤光片 F,以调 整两束光的光强比约为 1:1。为了使 H_2 再现时 衍 射光波不受直接反射光波的干扰, H_2 的法线和光轴 之间夹一角度 θ 。 H_2 置于复位架上,曝光后也采取 不定影的方法以减少乳胶收缩。

位相共轭反射镜 H₂的使用光路如图2所示。 H₂与物0的相对位置与记录时的位置严格相同,并 在H₂与0之间置一半反半透镜 HM,它的位置要 避开物光在 H₂上的直接反射光。当用物光0照明 H₂时,H₂的衍射光0*经 HM 反射,用毛玻璃可 在相应位置接到原物的实像。

感谢赵达尊副教授的有益讨论。

(收稿日期: 1987年4月2日)

单层高框架结构自振特性的激光全息干涉试验研究

戚 蓝 张崇文 何伯森 顾洪恩 (天津大学)

Study on natural vibration property of single tier high frame by laser holographic interferometic experiments

Qi Lan, Zhang Congwen, He Bosen, Gu Hongen (Tianjin University, Tianjin)

Abstract: Single tier high frame is a typical frame of factory building. It is necessary to determine natural vibration property of the frame in earthquake-resistant design. We have studied natural vibration property of the frame by laser holographic interferometry. The results show that this method is useful in studying these problems.

一、引言

单层高框架结构在一些工程中,比如在高空间 厂房、中小型水电站等建筑物,应用比较普遍。该结构的抗震设计有其特殊性。

我们应用激光全息干涉法进行了钢架式水电站 厂房^[1]、重力坝和240m高拱坝等建筑物的自振特性 的研究,并与动有限元法相法合对高拱坝结构动应 力进行了分析研究^[2]。将这种方法应用于单层高框 架结构厂房的自振特性研究是一种新的尝试。 二、模型设计

按弹性相似律设计模型, 原型及模型各物理量 之间应满足

$$f_{\mathbf{P}} = \frac{1}{\lambda_L} \sqrt{\frac{E_P}{E_M} \cdot \frac{\gamma_M}{\gamma_P}} \cdot f_M \tag{1}$$

式中 λ_L 为几何比尺; f_P 、 f_M 分别为原型及模型自振频率; E_P 、 E_M 分别为原型及模型动弹性模量; γ_P 、 γ_M 分别为原型及模型容重。

三、试验原理

试验模型以某一自振频率振动时,用时间平均 法记录振动信息,并用下述公式求出振动振幅,即

$$a(r) = \frac{\lambda}{2\pi} \frac{P_n}{\cos\theta_1 + \cos\theta_2} \quad P_n = 2.40, \ 5.52$$
(2)

式中a(r)为物体表面点r的振动振幅; λ 为所用激 光的波长; P_n 为暗条纹所在位置上的零阶贝塞尔函 数各零点值; θ_1 、 θ_2 分别为照明光和衍射光(反射光) 与振动矢量的夹角。

四、试验实例与试验方法

所研究的厂房结构是在蓟县的一座水电站,该 水电站厂房采用单层高框架结构形式(净空17m)。 由于该地区处于七级地震区,八级设防。为进行抗 震设计,根据工程单位的设计要求我们第一次用激 光全息干涉法对此工程进行测振研究,为设计单位 提供设计所用的数据。

(1) 模型制作

模型采用有机玻璃制成,模型比尺为1:200, 厂房模型的下部用 914 胶粘于铁板上,以模拟 刚基。

(2) 试验方法

激光全息干涉测振光路及试验设备见图1。

厂房模型框架下部围封墙上粘有压电陶瓷片。信 号发出器发出正弦信号加在某些压电陶瓷片作为激 振片使模型起振,另一些压电陶瓷片起拾振的作用。 起振与拾振(经放大)信号同时送入示波器中,得到 一个李萨如图。改变信号发生器输入信号的频率, 当此频率等于厂房模型的自振频率时,结构发生共 振,模型振动振幅加大,拾振信号反应为最大,并在 示波器上显示出来。此时记下频率计上的读数,即 为结构的某一阶自振频率。试验所得到模型的各阶 自振频率根据(1)式换算到原型的自振频率。表1表

图 1 元路图及试验设备示意图 **U**一全反镜; S—分光镜; L—扩束镜; K—光闸; H—全息干板

示各阶模型和原型的自振频率值。

表1 前三阶自振频率					
振型阶数	1	2	3		
模型频率(Hz)	169	212	248		
原型频率(Hz)	1.578	1.980	2.316 ₁		

模型以各阶自振频率振动时依次对结构进行全 息照相,得到时间平均全息图,然后再现、分析得到 模型的自振振型。在本课题研究中拍摄前三阶自振 振型的全息图,图2是第一阶振型全息图的再现像。

图 2 一阶振型全息图的再现像

在自振频率和自振振型的量测和拍摄的过程中 应十分注意室温变化,因为模型材料的动弹性模量 值与温度的关系很大,这一点应加以重视,否则会影 响试验的精度。

五、试验结果与动力有限元分析结果的比较

根据厂房上部为框架结构,下部有进水口和出 水闸墩,计算时将结构简化取为梁单元计算,中节点 共计463个,划分单元549个,在M-160机上用 SAP-5程序完成计算。

动力有限元分析计算的自振频率与试验结果的 比较见表2。

表2 试验值与动力有限元计算结果比较

振型阶数	道·叶 上 通道	2	3
试验测频率(Hz)	1.578	1.980	2.316
计算频率(Hz)	1.5136	1.9331	2.3709
相差百分比	4.3%	2.4%	2.3%

激光全息干涉法与动力有限元法得到结构的自 振振型差异不大,图3给出两种方法得到的厂房结 构上游墙面一阶振型的比较。这说明激光全息干涉 法是研究结构自振特性的行之有效的方法,它不仅 可运用于拱坝、重力坝等块体结构的动力问题研究, 而且也适用于框架式结构。 将激光全息干涉法推广 到用于高层建筑物自振特性的研究上将会具有广阔 的前景。

参考文

 何伯森,陈吉书。中国激光,1983;10(2):105
 张崇文 et al. 水利学报,1985;(3):8 (收稿日期:1987年3月13日)

高阶喇曼辐射的弛豫振荡和光束特性

成序三 楼祺洪 霍芸生 王润文 (中国科学院上海光机所)

Relaxation oscillation and beam characteristics of higher order Raman emission

Cheng Xusan, Lou Qihong, Huo Yunsheng, Wang Runwen (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai)

Abstract: Raman shifted convesion from AS₃ (226 nm) to S_5 (849 nm) have been observed in high pressure H₂ pumped by high power XeCl eximer laser radiation (308 nm). Its photonconversion efficiency into blue-green region (S₃, 499 nm) was obtained up to 39%. Relaxation oscillations of higher order Raman shifted emissions were obtained and analysed.

一、前言

准分子激光器的受激喇曼散射一般采用气体作 为非线性介质。对 XeCl(308 nm)激光,采用金属蒸 气(Pb、Ba等)作为介质⁽¹⁾,进行共振受激喇曼散射, 可以得到单一蓝绿波长的喇曼光。 但是, XeCl 在氢 气中的喇曼散射,要到第3阶高阶斯托克斯喇曼频 移才处于蓝绿光(499 nm)。这种高阶喇曼过程不适 宜用小信号注入放大形式来实现单一波长高效蓝绿 光转换。本文的研究表明,采取适当的聚焦光束泵 浦,用简单的单程受激喇曼超荧光放大器工作,可实 现 XeCl 激光在氢气中单一特定蓝绿 波长(499 nm) 占主导地位的高效喇曼转换,第三阶斯托克斯蓝绿 光的量子转换效率可达 ns,=39%,输出能量 236 mJ,输出功率 10 MW(236 mJ 能量、24 ns 脉宽),而 泵浦功率18 MW(1J, 55 ns), 这对应56%的功率 转换效率。

二、实验结果与讨论

图 1 为实验装置方框图。泵浦 光是 X-光 预电 离放电泵浦 XeCl 准分子激光器。采用放大倍率 M=6,等效菲涅尔数 N_{eq} =88的正支共焦凹凸非稳腔, 输出光斑为中心有 0.8 cm 孔径圆孔的 2.3×2.0 cm³ 矩形环,光束远场发散角为 0.3 mrad。输出激光功 率 18 MW(1J、55 ns),激光脉冲前沿小于 2 ns。喇 曼池长 1.2 m,泵浦光用 1 m 焦距透镜聚焦进入喇 曼池,焦面平均聚焦功率密度为 13 GW/cm²。池中 充以高压氢气,压力在 3 atm 到 17 atm 范围变化。

* 本工作得到国家科学基金资助。